Correlating surface cation composition and thin film microstructure with the electrochemical performance of lanthanum strontium cobaltite (LSC) electrodes

نویسندگان

  • G. M. Rupp
  • A. Limbeck
  • M. Kubicek
  • A. Penn
  • M. Stöger-Pollach
  • G. Friedbacher
  • J. Fleig
چکیده

La0.6Sr0.4CoO3 d thin films of varying thicknesses (20–170 nm) were prepared by pulsed laser deposition on yttria-stabilized zirconia (100) substrates, and their electrochemical electrode performance was correlated with the chemical surface composition and microstructure (e.g. porosity, surface area). The surface cation composition was analyzed by an atomic etching procedure with on-line inductively coupled plasma optical emission spectrometry detection. The surface sensitivity of the method was increased by dynamically switching the etching reagent during the on-line analysis and quantitative results for even the top atomic layer were obtained. A water-soluble Sr-rich surface species could be quantified on top of the LSC films and in combination with electrochemical analysis of the films by impedance spectroscopy an improved understanding of the surface exchange resistance could be obtained. Microstructural features such as the effective porosity of the films became accessible by a combination of these methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface chemistry of La0.6Sr0.4CoO3−δ thin films and its impact on the oxygen surface exchange resistance

The surface composition of dense La0.6Sr0.4CoO3 d (LSC) thin film model electrodes, deposited by pulsed laser deposition at 600 C on yttria-stabilized zirconia (100) electrolytes, was investigated by low-energy ion scattering (LEIS) and time resolved inductively coupled plasma mass spectrometry (ICP-MS). Results obtained by both methods agree qualitatively and quantitatively and provide a compr...

متن کامل

Real-time impedance monitoring of oxygen reduction during surface modification of thin film cathodes.

Improvement of solid oxide fuel cells strongly relies on the development of cathode materials with high catalytic activity for the oxygen reduction reaction. Excellent activity was found for perovskite-type oxides such as La1-xSrxCoO3-δ (LSC), but performance degradation, probably caused by surface composition changes, hinders exploitation of the full potential of LSC. This study reveals that t...

متن کامل

The effect of saccharin on microstructure and corrosion behavior of nanocrystalline nickel thin films in alkaline solution

In this study the effect of crystallite size reduction and microstructure on the electrochemical corrosion behavior of nanocrystalline nickel (NC Ni) were investigated using Tafel polarization and electrochemical impedance spectroscopy (EIS) measurements in 10 wt.% NaOH. NC Ni coatings were produced by direct current electrodeposition using chloride baths in presence and absence of saccharin as...

متن کامل

Effective enhancement of electrochemical properties of LSM oxygen electrode in SOCs by LNO nano-catalyst infiltration

In this paper, the effects of infiltration of La2NiO4 (LNO) as a mixed ionic and electronic conductor (MIEC) on the electrochemical performance of porous strontium doped lanthanum manganite (LSM) oxygen electrode of solid oxide cells, in the temperature ranges of 650-850 °C, is reported. XRD and FE-SEM results of the LNO sample calcined at 900 °C confirmed the formation of single phase LNO nano...

متن کامل

Structural and Electrochemical Properties of LiNi0.5Mn0.5O2 Thin-Film Electrodes Prepared by Pulsed Laser Deposition

LiNi0.5Mn0.5O2 thin-film electrodes have been prepared by pulsed laser deposition followed by postannealing at different temperatures. The microstructural and morphological characterizations using X-ray diffraction, field-emission-scanning electron microscopy, and Raman spectroscopy measurements show that the structure and phase purity of the thin films are highly dependent on the postannealing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014